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FLUCTUATIONS AND TRANSPORT IN AN ELECTRIC FIELD 

Yu. A. Buevlch and V. V. Butkov UDC 5 3 2 . 5 : 5 3 7  

It is shown that thermodynamic fluctuations in a liquid in an applied electric 
field generate microconvective motion causing mass and heat dispersion. The cor- 
responding dispersion coefficients can be comparable in value or even exceed the 
coefficients of molecular diffusion and thermal conductivity. 

An applied electric field can significantly stimulate heat- and mass-transport processes 
in liquids with very different electric and magnetic properties [I-3]. The usual interpre- 
tation is that this is due to the appearance of specific convective motions in the liquid 
from Coulomb pondermotive forces and Lorentz forces and also from convective transport of 
volume charge. 

However, these effects do not exhaust all possible effects from the field, since many 
examples are known where heat and mass exchange are stimulated in situations where convection 
does not appear. In addition, the necessary condition for the appearance of electro or mag- 
netohydrodynamic convection is that there be nonuniformities in either the properties of the 
liquid or the external field. Stimulation of heat and mass transport in an applied field is 
observed in conditions when both the liquid and the field can certainly be considered as uni- 
form. Therefore, besides convection, one concludes that there is another fundamental effect 
of the electric field on transport processes, in general not involving the violation of mech- 
anical stability of the liquid. 

It is shown below that the latter effect comes from the appearance of additional micro- 
convective dispersion in a liquid which is macroscopically at rest. This dispersion is due 
to random small-scale fluctuations which appear due to the interaction of the external field 
with random fluctuations of the volume charge. The latter is in turff caused by the usual 
thermodynamic fluctuations. Since the purpose of the present paper is to demonstrate the 
existence of this effect, we consider only the simplest examples in a uniform applied elec- 
tric field and with several simplifying assumptions. 

Fluctuations and Dispersion. At small Reynolds n,~bers the equations of hydrodynamics 
in the presence of the pondermotive force are given by 

?Or/Or = - -  VP + F AV + pE, divv = 0. ( 1 ) 

As i n  [ 4 ] ,  t he  above  e x p r e s s i o n  f o r  t h e  p o n d e r m o t i v e  f o r c e  i s  a l s o  assumed to  be v a l i d  f o r  a 
c o n d u c t i n g  l i q u i d  i f  t h e  c o n d u c t i v i t y  can be  made as  s m a l l  as  d e s i r e d .  The u n p e r t u r b e d  s t a t e  
i s  the  s t a t e  o f  r e s t  where  v = O, p = c o n s t ,  p = O, b u t  g = Boffffi0. 

The t h e o r y  o f  h y d r o d y n a m i c  f l u c t u a t i o n s  [5] r e d u c e s  t o  (1) and t h e  g e n e r a l  e q u a t i o n  o f  
h e a t  t r a n s p o r t ,  where  t he  v a r i a b l e s  a r e  r e g a r d e d  as  s m a l l  f l u c t u a t i o n s  and l o c a l  random 
s t r e s s e s  and h e a t  f l u x e s  a r e  a d d e d  t o  t h e  e q u a t i o n s .  I t  i s  t h e n  n o t  d i f f i c u l t  t o  o b t a i n  
directly equations for the correlation functions [6]. Here we will assume that the hydro- 
dynamic fluctuations are generated mainly by fluctuations in the pondermotive force, so that 
we do not need to introduce additional random terms in (l). The spectral properties of the 
fluctuations are studied with the help of the correlation theory of stationary random pro- 
cesses [7]: any random function f of the coordinates r and time t is represented as a 
Fourier-Stieltjes integral with random measure dZf: 
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f (t,r) = S dZft~t+i~r" 

The Eule r  c o r r e l a t i o n  f u n c t i o n  of  two random func t i ons  f ( t ,  r)  and g ( t ,  r)  can then  be r e p r e -  
sen ted  in  the form 

< f (t, r) g (t + x, r + x) > = 5d~ ~ dxet~+~'~l~ (~, x), 

~ l . i  (~, u) do~/x = lim < dZldZ~ > (d~, dx-- ,-  0), 

where ~f,g is the appropriate spectral density, and the integration goes over the entire fre- 
quency axis ~ and over all wave vectors ~. 

Putting 0E ~ P's in (I) and using the above representation for the random variables v, 
p, and 0, we obtain linear algebraic equations for the random measures. After elimination 
of the random measure of pressure fluctuations, we find 

[ (xEo)x] dZo 
dZo = E0 x ~ ~o (i~ + ~0~ 2) ' (2) 

which couples the random v e l o c i t y  f i e l d  o f  the l i q u i d  to f l u c t u a t i o n s  in the volume charge.  

The d i s p e r s i o n  t enso r  r e s u l t i n g  from v e l o c i t y  f l u c t u a t i o n s  can he w r i t t e n  as an i n t e g r a l  
wi th  r e spec t  to time of  the Lagrangian v e l o c i t y  c o r r e l a t i o n  t enso r  wi th  the help of  the w e l l -  
known Green--Kubo formula.  The r e l a t i o n  between the Euler  and Lagrange c o r r e l a t i o n  func t ions  
is one of the central problems in contemporary statistical mechanics, and it still has not 
been completely solved, although a new approach has recently been developed [8]. For small 
fluctuations in the first approximation, we can (in general) ignore the difference between 
the Euler and Lagrange correlation functions and write for the dispersion tensor 

i i  S oS" ,~ o, 
axe *~ .  oj(~, ~) . (0, x). (3) 

0 0 

where the l a s t  e q u a l i t y  i n  (3) was der ived  by i n t e r chang ing  the order  o f  i n t e g r a t i o n  wi th  
r e spec t  to  d~ and dx and us ing  the well-known Four ie r  i n t e g r a l  r e p r e s e n t a t i o n  of  the d e l t a  
function. 

It follows from (2) that the dispersion induced by fluctuations is anisotropic, with the 
direction of the unperturbed electric field Eo being singled out. We choose one of the co- 
ordinate axes (the first) along Eo, then Dij is determined by calculating its eigenvalues Dx 
and Da = D3. 

Model Systems. The properties of volume charge fluctuations depend significantly on 
the type of liquid under consideration. We consider two complementary cases: an ideal weak 
electrolyte and a weakly conducting liquid. In both cases (for simplicity) we ignore the 
effect of temperature fluctuations on the properties of the medium. In the case of the elec- 
trolyte, we assume that the electrical conductivity is due to a single dissociating impurity, 
and the valences of positive and negative ions are the same. We also assume that the disso- 
ciation is complete and we ignore fluctuations in the dielectric constant. In the case of 
the weakly conducting liquid, we assume that fluctuations in the dielectric constant and 
electrical conductivity result only from density fluctuations. 

Electrolyte. Let the number concentration of impurity molecules be no + n' where n' 
gives the concentration fluctuations. The equations of electrodynamics needed in the analy- 
sis are (we take into account electroosmotic effects using the Nernst--Planck relation): 

I 
j = o E  - -  rvn q- 4---~1 OOt(eE) ~ pv, div j = 0, p = ~4n div (eE), (4) 

and 

a = ~ (ul + uz) n = sn, r = kT (u~ - -  u~) (5) 

where subscripts I and 2 refer to positive and negative ions, respectively. 

Using the assumptions discussed above, we linearize (4) and (5), represent the random 
functions j'(r, t), E'(r, t), p(r, t) and n'(r, t) as Fourier--Stleltjes integrals, and solve 
the resulting system of linear algebraic equations for the random measures. In particular, 
we have 
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4 ~Oo r~ 2 -4- is (zEn) dZn, r = ~ ,  

dZ~ = io~ -? co, eo (6) 

d e t e r m i n i n g  dZ v from (2) in  terms o f  dZn. 

Weakly Conduc t ing  L iqu id .  I n  t h i s  case  (4) w i l t  s t i n  be c o r r e c t  bu t  r = 0,  o = o ( y ) ,  
and e = E ( y ) .  The ana log  to  (6) in  the l i n e a r i z e d  t h e o r y  i s  

( c~ de d o )  "E~ dZ v. 
dZ o = i 4 ~ d? dy ifo + co, (7) 

A d i e l e c t r i c  medium i s  o f  p a r t i c u l a r  i n t e r e s t .  We can c o n s i d e r  a d i e l e c t r i c  to  be a 
weakly  c o n d u c t i n g  medium w i t h  v a n i s h i n g l y  smal l  c o n d u c t i v i t y .  The r e s u l t s  can t h e n  be ob-  
t a i n e d  from t h o s e  f o r  a weakly  c o n d u c t i n g  l i q u i d  by p u t t i n g  do /dy  = 0 and t a k i n g  the  l i m i t  
c~, "L, Oo § O. 

Thus, the spectral properties of volume charge fluctuations are determined by those of 
impurity concentration fluctuations (electrolyte) and density fluctuations (weakly conducting 
liquid). 

Concentration and Density Fluctuations. It is known that fluctuations of the concentra- 
tion n at different points of space and different times are not correlated in the hydrodyna- 
mic limit so that the correlation function is a delta function [6]. Therefore, these fluc- 
tuations can be considered as white noise with a spectral density independent of ~ and z. 
However, this is not the case at distances comparable to the linear scale Zm of the internal 
structure of the medium, or for time intervals of the order of the lifetime T m of structural 
formations; in these cases n' exhibits strong correlations. It is convenient to introduce 
the "molecular" frequency ~m and wave number x~ such that 

v~ ,,(,0, z)  = N r  (o~--o~) Y ( , ~ -  I~l), (8) 

where Y(x) is the Heaviside unit step function. Equation (8) is a reasonable approximation 
to the actual dependence of the spectral density on frequency and wave vector when the cor- 
relation distance is of order Z m %Zm* and the correlation time is of order Xm ~ ~*. This 
relation can be Justified either with the help of a method related to the well-known Debye 
method of determining the number of independent harmonics in the Fourier transform of n' (r, 
t) in terms of the number of degrees of freedom of the system (where the integration over 
wave vector is replaced by a s,,mm~tion over the corresponding Brilluoln zone), or by the 
device of replacing the delta function in the expression for the correlation function by a 
function (distribution in the sense of Schwartz) smeared out in space or time. Formally, the 
situation is completely analogous to that in the spectral theory of concentration fluctua- 
tions in dispersive systems [9]. 

The constant N in (8) can be determined from the requirement that fluctuations in the 
number of impurity molecules n~ in volume V satisfy the well-known relation 

,S 

< nr > = Yn,. (9) 

Choosing volume V to be a parallelepiped of lengths L,, La, and Ls oriented along the 
coordinate axes and using the Fourier--StieltJes integral for n' (r, t), we obtain 

v 1=~ b9 

From t h i s  and (8) i t  f o l l o w s  t h a t  

b)rtg 

=8 5 < Z.dZ: >  'do <5 

a 1 - -  cos (~ILI) a ~ 3 
X [] ~, 16 N ~  [I lira 1 - -  cos(x~Ll) dzl = 16 N~m [] l i r a - - ( 1  - - e  -uL.f ) = 16 aSNo~mV (V = lnl-~14). 

/=, ~ 1=, u-o_.J ~7 + Y~ t=, ,-.o v 

Comparing this with (9) we have  

N = n0/16~'~,  (10) 

which then determines the spectral density (8). 

Similarly, using in place of (9) the well-known formula for the mean square fluctuation 
of the number of molecules n~ in volume V 
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,~ kT~ 1 I[O__VV'~ 
<n v > =--gno,v v-~ no ' ~ - -  V ~,Op-Jr' ( I I )  

we obtain the following result for the spectral density of y' (r, t): 

Dispersion Coefficients. With the help of the above results, one can easily d~termine 
the spectral densities of all random processes and calculate the corresponding corr:lation 
functions, including cross-correlations. Here we find only the dispersion coefficients, for- 
mally defined by (3). 

Electrolyte. In this case from (2), (6) and (8), (10) we have 

~F~, .~(O, x) noE~ ( '~ ( .u~ ) ~ = ,z "-F s=E~ • I Y (• 
8 2 2 ~ ] ~2 

16 r~ ~0m,mm 

I n t e g r a t i n g  these  express ions  as i n d i c a t e d  in (3) we get  

D, : 2n~176215 2 ( +  s~E~~ q - l  r~m) (13) 
15 ~l~oo),com 

2 noE~oxm ( 3. sZE~ + l rz• 
u ~ 2 56 24 

Using r .  s .  and ~ ,  from (5) and (6) we ge t  fo r  the l o n g i t u d i n a l  d i s p e r s i o n  c o e f f i c i e n t  

2 D~=: D;-F D"I. D; = l 174o ( ~o ~,~ 
" 840." vo 2 \-~o) nomra' (14) 

D ; =  360a 3 v~ ez / ul+us \ ?0 n0~m 

and an analogous exp re s s ion  fo r  the  t r a n s v e r s e  d i s p e r s i o n  c o e f f i c i e n t .  The two terms in  (14) 
a r i s e  from f l u c t u a t i o n s  in  the conduct ion  Current  and f l u c t u a t i o n s  in  the d i f f u s i o n  c u r r e n t ,  
respectively. 

We estimate the magnitudes of the terms in (14). It is convenient to use Gaussian 
units. If the formation of associations in the system does not play an important role, then 
• 13 and ~m~Dm~"Dmn~ 13 where Dmis the molecular diffusion coefficient for the 
impurity molecules. In Gaussian units, for an aqueous solution we have vo ~ 10 -a, (eo/yo) 2 
I03, Dm~ 10-6-10 -~. Putting Eo ~ 10 -2 (30 kV/cm) for illustration, assuming that the mobi- 
lities of positive and negative ions are different and using the values kT ~ i0-~4, e ~ 10-~o, 
we obtain 

D1 ~ (10 ie + 10 i7) n~ 4/3, D; ~ (10 ~ + I0  5) ng ~/3. 
When no ~ I015 we have D~ ~ I0-"-I0 -3 and D~ ~ I0-6-I0 -s, which is comparable to or larger 
than the typical value of the molecular diffusion coefficient in a liquid (order I0-6-I0-5). 
For small electrolyte concentrations, fluctuations in the conduction current are most impor- 
tant. With an increase in the concentration, the fluctuations in the diffusion current become 
more important. The two types of fluctuation are equally important for no ~ I0 ~8. 

It is obvious that the above relations are not valid for very weak electrolytes since 
we have ignored the electrical conductivity of the solvent. In addition, errors arise from 
ignoring fluctuations in the dielectric constant, the effect of temperature fluctuations, and 
SO on. 

From (2), 

kT"E~ ( 
"" 3 2 2 
10 ~ ~200) , OOra 

(7), and (12) we have in place of (13): 

4~ d? d ? /  ~ ~z, 

Weakly Conductin$ Liquid. 

V,,1, ,,~(0, ~) = 

2 8 5  



~F~ ~(0, ~r kT~E4 o~, de do ~ • x ~ 
" ~ ~ - ~  d y .  d'f • 16 n~Vor , , 

and the formulas for the dispersion coefficients replacing (14) become: 

D 1 =-= 

V~ ----.c 
kT~E~xm 

2 2 
140 ~Vota.o)m 

~ ,  de do ~ ,  

4 ~ d~ d~ / 

4 n dy dy / 
(15 )  

A dielectric medium (~, % Oo ~ O) is of particular interest. For the longitudinal dis- 
persion coefficient, we have 

8 4 0 ~ e ~  ~ dy / (16)  

and  t h e  f o r m u l a  f o r  t h e  t r a n s v e r s e  d i s p e r s i o n  c o e f f i c i e n t  i s  s i m i l a r .  

, E o / v o  ~ 10 ~2, ( d ~ / d T )  2 ~ 10 2 w h e r e  a s  b e f o r e  we u s e  G a u s s i a n  u n i t s .  We put 8 ~ I0  - * ~  4 = 
Then we have from (16) Dx ~ lO-*4~m/~m �9 For fluctuations on the molecular level, as in the 
case of the electrolyte considered above, the correlation length is of the order of the size 
of the molecule and the lifetime of the fluctuations is of the order of the characteristic 
period of molecular vibration. In this case~m ~ Zm ~ ~ ]07-|08, ~m ~ ~m~ ~ 108-I0x2 and Dx 
is several orders of magnitude less than the typical value of the molecular diffusion coef- 
ficient. But this conclusion is completely changed if there is a supermolecular structure 
in the liquid (swarms or cybotactic groups) [lO]. In both cases ~m ~ Im ~ and Im is the char- 
acteristic size of the groups; ~m can then depend on their nature. 

For athermal swarms (thermodynamically stable elements of an ordered phase (e.g., crys- 
tal) with a purely kinetic origin [I0]) we have mm ~ Dm~, where Dm is the effective coeffi- 
cient of Brownian diffusion of a single swarm. This can be estimated using the Einstein for- 
mula which takes into account the barrier to diffusion in a concentrated swarm: Dm % ~kT/ 
6~oZ m ~ IO-X~Z~ ~ where the constraint factor is taken to be ~ % lO -~ Thus ~m/~m ~ 10*~72 
Dx ~ Z~, and the dispersion induced by fluctuations becomes comparable to molecular diffusion 
for ~m ~ 10-3 cm; the corresponding inequality on the lifetime has the form Tm~]O -5 sec. 

For cybotactic groups (thermal associations which appear as a result of large-scale fluc- 
tuations, the orienting effect of external fields on the melecules, etc. [lO]), Dm is a mole- 
cular diffusion coefficient inside eachseparate group. It should be approximately equal to 
the value typical for molecular diffusion in a solid. Using the estimate Dm ~ 10 -~=, we 
obtain D, ~ 10-=~m and the effect of dispersion is comparable to molecular diffusion for ~m~ 
I0 -6 cm or Tm ~lO -~ sac. 

The above estimates are very rough and overall too low; this is because we have ignored 
temperature fluctuations and completely ignored the effect of the applied field on the struc- 
ture and consequently on the properties of the liquid itself. But even without considering 
the structuring effect of the field, it is clear that fluctuation effects can be very impor- 
tant in the case of a weakly conducting liquid near a transition into a liquid crystal phase, 
or a liquid near the melting point. 

The general conclusion is that dispersion induced fluctuations can significantly increase 
the effective diffusion coefficient in widely varying types of liquids. The same conclusion 
can be made concerning the effective thermal conductivity. Although the origin of the effect 
is extremely weak thermodynauzlc fluctuations, it is no less real than other well-known pheno- 
mena due to fluctuations: Brownian motion, light scattering by density fluctuations, anoma- 
lous behavior of the thermodynamic quantities near a critical point. 

The analysis given above shows that dispersion due to fluctuations can help to explain 
the observed dependences of the effective heat and mass exchange coefficients on the physical 
properties of the liquid and the regime parameters of heat and mass exchange, including 
effects which are difficult to understand only on the basis of the classical explanations. 
A detailed discussion of these effects is outside the scope of this paper. Here we only 
mention that an important example is various hysteresis phenomena [l, 2] which are obviously 
related to hysteresis of the internal structure of the liquid. 
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NOTATION 

D, diffusion coefficient; Dij , Dj, dispersion tensor and its eigenvalues, respectively; 
E, electric field strength; e, charge of the electron; k, Boltzmann constant; Im, linear 
scale of the internal structure; Lj, linear dimension; n, number concentration of molecules; 
N, constant defined in (8); p, pressure; r, s, coefficients defined in (5); r, radius vector; 
t, time; T, temperature; uj, mobility of ions; v, velocity; V, volume; z, ion valence; dZ, 
random measure; ~, isothermal compressibility; y, density; F, constant in (12); c, dielectric 
constant; ~, constraint factor; ~, wave vector; ~m, maximum wave number; ~, ~, dynamic and 
kinematic viscosities; p, volume charge density; ~, electrical conductivity; Tm, lifetime of 
a fluctuation; ~, spectral density; m, frequency; mm, maximum frequency; ~,, parameter defined 
in (6); subscript 0, state without fluctuations, subscripts 1 and 2, positive and negative 
ions, and also the longitudinal and transverse directi0ns; a prime denotes a fluctuation, 
and an asterisk denotes the complex conjugate. 
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